1.Fundamentals of the Ricci Flow Equation

1.Fundamentals of the Ricci Flow Equation

Fri Jul 12 2024
3 label.readTime
382 label.wordCount

Hamilton’s Ricci flow#

Hamilton’s Ricci flow equation is

tgij=2Rij\frac{\partial}{\partial t}g_{ij}=-2R_{ij}
  • EX 1: Let Mn=SnM^{n}=S^{n} and let gSng_{S^{n}} denote the standard metric on the unit nn-sphere in Euclidean space. If g0=r02gSng_{0}=r_{0}^{2} g_{S^{n}} for some r0>0r_{0}>0 ( r0r_{0} is the radius), then g(t)(r022(n1)t)gSn\begin{equation*} g(t) \doteqdot\left(r_{0}^{2}-2(n-1) t\right) g_{S^{n}} \tag{2.1} \end{equation*} is a solution to the Ricci flow with g(0)=g0g(0)=g_{0} defined on the maximal time interval (,T)(-\infty, T), where Tr02/2(n1)T \doteqdot r_{0}^{2} / 2(n-1). That is, under the Ricci flow, the sphere stays round and shrinks at a steady rate.

Proof:

  • EX 2: (Homothetic Einstein solutions). Suppose that g0g_{0} is an Einstein metric, i.e., Rc(g0)cg0\operatorname{Rc}\left(g_{0}\right) \equiv c g_{0} for some cRc \in \mathbb{R}. Derive the explicit formula for the solution g(t)g(t) of the Ricci flow with g(0)=g0g(0)=g_{0}. Observe that g(t)g(t) is homothetic to the initial metric g0g_{0} and that it shrinks, is stationary, or expands depending on whether cc is positive, zero, or negative, respectively.

Proof:

  • EX 3: Let (M1,g1(t))\left(M_{1}, g_{1}(t)\right) and (M2,g2(t))\left(M_{2}, g_{2}(t)\right) be solutions of the Ricci flow on a common time interval I. Show that (M1×M2,g1(t)+g2(t))\left(M_{1} \times M_{2}, g_{1}(t)+g_{2}(t)\right) is a solution of the Ricci flow. In particular, if (Mn,g(t))\left(M^{n}, g(t)\right) is a solution of the Ricci flow, then so is (Mn×R,g(t)+dr2)\left(M^{n} \times \mathbb{R}, g(t)+d r^{2}\right) (we can replace (R,dr2)\left(\mathbb{R}, d r^{2}\right) by any static flat manifold).

Proof:

the evolution equation for the scalar curvature#

the evolution equation for the scalar curvature

tR=ΔR+2Rc2\begin{equation*} \frac{\partial}{\partial t} R=\Delta R+2|\mathrm{Rc}|^{2} \tag{2.2} \end{equation*}

When n=2n=2, since then Rc=12Rg\mathrm{Rc}=\frac{1}{2} R g, we have

tR=ΔR+R2\begin{equation*} \frac{\partial}{\partial t} R=\Delta R+R^{2} \tag{2.3} \end{equation*}

Note the similarity to the heat equation ut=Δu\frac{\partial u}{\partial t}=\Delta u.

Lemma (Variation of scalar curvature). If sgij=vij\frac{\partial}{\partial s} g_{i j}=v_{i j}, then

sR=ΔV+div(divv)v,Rc\begin{equation*} \frac{\partial}{\partial s} R=-\Delta V+\operatorname{div}(\operatorname{div} v)-\langle v, \mathrm{Rc}\rangle \tag{2.4} \end{equation*}

where V=gijvij=trace(v)V=g^{i j} v_{i j}=\operatorname{trace}(v) is the trace of vv.

Proof:

Proof of formula (2.2):

  • Ex 4: . Let (M2,h)\left(M^{2}, h\right) be a Riemannian surface. Recall that if g=uhg=u \cdot h for some function uu on MM, then Rg=u1(RhΔhlogu)R_{g}=u^{-1}\left(R_{h}-\Delta_{h} \log u\right) Using this equation and the fact that Rij=12RgijR_{i j}=\frac{1}{2} R g_{i j} when n=2n=2, show that g(t)=u(t)hg(t)=u(t) \cdot h is a solution of the Ricci flow if and only if ut=ΔhloguRh\begin{equation*} \frac{\partial u}{\partial t}=\Delta_{h} \log u-R_{h} \tag{2.5} \end{equation*}