3.The Einstein-Hilbert functional

3.The Einstein-Hilbert functional

Fri Jul 12 2024
3 label.readTime
467 label.wordCount

The gradient flow for E#

If sgij=vij\frac{\partial}{\partial s} g_{i j}=v_{i j}​,then

sdμ=12Vdμ\begin{equation*} \frac{\partial}{\partial s} d \mu=\frac{1}{2} V d \mu \tag{2.11} \end{equation*}

Proof:

Ex1:(Variation of the inverse of gg ). By differentiating the formula gijgjk=δkig^{i j} g_{j k}=\delta_{k}^{i}, show that

sgij=gikgjsgk\begin{equation*} \frac{\partial}{\partial s} g^{i j}=-g^{i k} g^{j \ell} \frac{\partial}{\partial s} g_{k \ell} \tag{2.14} \end{equation*}

Proof:

If sgij=vij\frac{\partial}{\partial s} g_{i j}=v_{i j}, then

ddsE=M(ΔV+pqvpqv,Rc+12RV)dμ=Mv,12RgRcdμ\begin{align*} \frac{d}{d s} E & =\int_{M}\left(-\Delta V+\nabla_{p} \nabla_{q} v_{p q}-\langle v, \mathrm{Rc}\rangle+\frac{1}{2} R V\right) d \mu \\ & =\int_{M}\left\langle v, \frac{1}{2} R g-\mathrm{Rc}\right\rangle d \mu \tag{2.15} \end{align*}

where

E(g)MRdμE(g) \doteqdot \int_{M} R d \mu

Proof:

Remark:Note that (twice) the gradient flow of EE is

tgij=2(E(g))ij=Rgij2Rij\begin{equation*} \frac{\partial}{\partial t} g_{i j}=2(\nabla E(g))_{i j}=R g_{i j}-2 R_{i j} \tag{2.16} \end{equation*}

Ex2:. Given a metric g0g_{0}, let

C{ug0:u>0 and Vol(ug0)=1}\mathcal{C} \doteqdot\left\{u g_{0}: u>0 \text { and } \operatorname{Vol}\left(u g_{0}\right)=1\right\}

be the space of unit volume metrics conformal to g0g_{0}. Show that subject to the constraint of lying in C\mathcal{C}, the critical points EE have constant scalar curvature.

Proof:

Ex3. Show that when n3n \geq 3, the negative gradient flow of EE in a fixed conformal class (i.e., in [g0]{g:g=eug0\left[g_{0}\right] \doteqdot\left\{g: g=e^{u} g_{0}\right. for some uC(M)}\left.u \in C^{\infty}(M)\right\} ) is the Yamabe flow tg=Rg\frac{\partial}{\partial t} g=-R g.

Proof:

In other words, we consider the more general class of flows

tgij=2(Rij+ijf)\frac{\partial}{\partial t} g_{i j}=-2\left(R_{i j}+\nabla_{i} \nabla_{j} f\right)

where ff is a time-dependent function. Flows of this form are equivalent to the Ricci flow since ijf=(Lfg)ij\nabla_{i} \nabla_{j} f=\left(\mathcal{L}_{\nabla f} g\right)_{i j} (see (1.24)). The following exercise verifies this.

Ex4. Define a 1-parameter family of diffeomorphisms Ψ(t)\Psi(t) : MMM \rightarrow M by

ddtΨ(t)=g(t)f(t)Ψ(0)=idM\begin{aligned} \frac{d}{d t} \Psi(t) & =\nabla_{g(t)} f(t) \\ \Psi(0) & =\operatorname{id}_{M} \end{aligned}

Show that gˉ(t)Ψ(t)g(t)\bar{g}(t) \doteqdot \Psi(t)^{*} g(t) and fˉ(t)fΨ(t)\bar{f}(t) \doteqdot f \circ \Psi(t) satisfy

gˉijt=2Rˉijfˉt=Δˉfˉ+ˉfˉ2Rˉ\begin{align*} \frac{\partial \bar{g}_{i j}}{\partial t} & =-2 \bar{R}_{i j} \tag{2.17}\\ \frac{\partial \bar{f}}{\partial t} & =-\bar{\Delta} \bar{f}+|\bar{\nabla} \bar{f}|^{2}-\bar{R} \tag{2.18} \end{align*}

Proof:

the gradient flow for F\mathcal{F}#

If we define

F(g,f)M(R+f2)efdμ\begin{equation*} \mathcal{F}(g, f) \doteqdot \int_{M}\left(R+|\nabla f|^{2}\right) e^{-f} d \mu \tag{2.21} \end{equation*}

then the gradient flow for F\mathcal{F}, under the constraint that efdμe^{-f} d \mu is fixed, is

tgij=2(Rij+ijf)tf=RΔf\begin{aligned} \frac{\partial}{\partial t} g_{i j} & =-2\left(R_{i j}+\nabla_{i} \nabla_{j} f\right) \\ \frac{\partial}{\partial t} f & =-R-\Delta f \end{aligned}

Proof:

  1. s(efdμ)=0\frac{\partial}{\partial s}\left(e^{-f} d \mu\right)=0,E(g)MRefdμ\mathcal{E}(g) \doteqdot \int_M R e^{-f} d \mu,Mf2efdμ=4Mef/22dμ\int_M|\nabla f|^2 e^{-f} d \mu=4 \int_M\left|\nabla e^{-f / 2}\right|^2 d \mu

  2. ddsE=MRsefdμ=Mv,Rcefdμ+M(ΔV+ijvij)efdμ\frac{d}{d s} \mathcal{E} =\int_{M} \frac{\partial R}{\partial s} e^{-f} d \mu =-\int_{M}\langle v, \mathrm{Rc}\rangle e^{-f} d \mu+\int_{M}\left(-\Delta V+\nabla_{i} \nabla_{j} v_{i j}\right) e^{-f} d \mu

  3. M(sf2)efdμ=M(vijifjf+2f(fs))efdμ\int_{M}\left(\frac{\partial}{\partial s}|\nabla f|^{2}\right) e^{-f} d \mu =\int_{M}\left(-v_{i j} \nabla_{i} f \nabla_{j} f+2 \nabla f \cdot \nabla\left(\frac{\partial f}{\partial s}\right)\right) e^{-f} d \mu

Ex6. Show that

Mf2efdμ=M(Δf)efdμ\int_{M}|\nabla f|^{2} e^{-f} d \mu=\int_{M}(\Delta f) e^{-f} d \mu

This shows that we may rewrite F\mathcal{F} as

F(g,f)=M(R+2Δff2)efdμ\mathcal{F}(g, f)=\int_{M}\left(R+2 \Delta f-|\nabla f|^{2}\right) e^{-f} d \mu

Motivations for doing this are given by (1.84) and (5.17).