4.Evolution of geometric quantities

4.Evolution of geometric quantities

Fri Jul 12 2024
5 label.readTime
692 label.wordCount

Variation of the Christoffel symbols#

Lemma 1(Variation of Christoffel symbols). If g(s)g(s) is a 1-parameter family of metrics with sgij=vij\frac{\partial}{\partial s} g_{i j}=v_{i j}, then

sΓijk=12gk(ivj+jvivij)\begin{equation*} \frac{\partial}{\partial s} \Gamma_{i j}^{k}=\frac{1}{2} g^{k \ell}\left(\nabla_{i} v_{j \ell}+\nabla_{j} v_{i \ell}-\nabla_{\ell} v_{i j}\right) \tag{2.23} \end{equation*}

Proof:

**Remark:**In coordinate-free notation, (2.23) is

(s)(X,Y),Z=12((Xv)(Y,Z)+(Yv)(X,Z)(Zv)(X,Y))\begin{equation*} \left\langle\left(\frac{\partial}{\partial s} \nabla\right)(X, Y), Z\right\rangle=\frac{1}{2}\left(\left(\nabla_{X} v\right)(Y, Z)+\left(\nabla_{Y} v\right)(X, Z)-\left(\nabla_{Z} v\right)(X, Y)\right) \tag{2.24} \end{equation*}

This formula may be derived directly from differentiating (1.4).

Corollary:(Evolution of Christoffel symbols under RF). Under the Ricci flow tgij=2Rij\frac{\partial}{\partial t} g_{i j}=-2 R_{i j}, we have

tΓijk=gk(iRj+jRiRij)\begin{equation*} \frac{\partial}{\partial t} \Gamma_{i j}^{k}=-g^{k \ell}\left(\nabla_{i} R_{j \ell}+\nabla_{j} R_{i \ell}-\nabla_{\ell} R_{i j}\right) \tag{2.25} \end{equation*}

Evolution of Laplacian under RF#

Lemma: (Evolution of Laplacian under RF). If (Mn,g(t))\left(M^{n}, g(t)\right) is a solution to the Ricci flow, then

t(Δg(t))=2Rijij\frac{\partial}{\partial t}\left(\Delta_{g(t)}\right)=2 R_{i j} \cdot \nabla_{i} \nabla_{j}

where Δg(t)\Delta_{g(t)} is the Laplacian acting on functions. In particular, when n=2n=2, t(Δ)=RΔ\frac{\partial}{\partial t}(\Delta)=R \Delta.

Proof:

**Ex1:**Given sgij=vij\frac{\partial}{\partial s} g_{i j}=v_{i j}, compute s(Δg(s))\frac{\partial}{\partial s}\left(\Delta_{g(s)}\right).

Proof:

  1. if sgij=vij\frac{\partial}{\partial s} g_{i j}=v_{i j}, then
sRij=12(ivj+jvivij)12ijV\begin{equation*} \frac{\partial}{\partial s} R_{i j}=\frac{1}{2} \nabla_{\ell}\left(\nabla_{i} v_{j \ell}+\nabla_{j} v_{i \ell}-\nabla_{\ell} v_{i j}\right)-\frac{1}{2} \nabla_{i} \nabla_{j} V \tag{2.29} \end{equation*}
  1. Commuting derivatives in (2.29) yields the variation of Ricci formula:
sRij=12(ΔLvij+ijVi(divv)jj(divv)i)\begin{equation*} \frac{\partial}{\partial s} R_{i j}=-\frac{1}{2}\left(\Delta_{L} v_{i j}+\nabla_{i} \nabla_{j} V-\nabla_{i}(\operatorname{div} v)_{j}-\nabla_{j}(\operatorname{div} v)_{i}\right) \tag{2.31} \end{equation*}

Here ΔL\Delta_{L} denotes the Lichnerowicz Laplacian, which is defined by

ΔLvijΔvij+2RkijvkRikvjkRjkvik\begin{equation*} \Delta_{L} v_{i j} \doteqdot \Delta v_{i j}+2 R_{k i j \ell} v_{k \ell}-R_{i k} v_{j k}-R_{j k} v_{i k} \tag{2.32} \end{equation*}

Note that (2.31) may be rewritten as

s(2Rij)=ΔLvij+iXj+jXi\frac{\partial}{\partial s}\left(-2 R_{i j}\right)=\Delta_{L} v_{i j}+\nabla_{i} X_{j}+\nabla_{j} X_{i}

where X=12VdivvX=\frac{1}{2} \nabla V-\operatorname{div} v. This is related to DeTurck’s trick in proving short time existence (see (2.47)).

Remark: By (1.50) we see that the Hodge Laplacian acts on 2-forms formally in the same way that the Lichnerowicz Laplacian acts on symmetric 2 -tensors.

Commutator formula for Hessian and Lichnerowicz heat operator#

Lemma:(Commutator formula for the Hessian and the Lichnerowicz heat operator). Under the Ricci flow, the Hessian and the Lichnerowicz Laplacian heat operator commute. That is, for any function ff of space and time we have

ij(ftΔf)=(tΔL)ijf\begin{equation*} \nabla_{i} \nabla_{j}\left(\frac{\partial f}{\partial t}-\Delta f\right)=\left(\frac{\partial}{\partial t}-\Delta_{L}\right) \nabla_{i} \nabla_{j} f \tag{2.33} \end{equation*}

Proof:

In other words,

[ij,tΔL]=0\left[\nabla_{i} \nabla_{j}, \frac{\partial}{\partial t}-\Delta_{L}\right]=0

where ΔLΔ\Delta_{L} \doteqdot \Delta acting on functions. An immediate consequence of the above lemma is the following.

**Corollary:**If g(t)g(t) satisfies the Ricci flow and f(t)f(t) satisfies the heat equation ft=Δf\frac{\partial f}{\partial t}=\Delta f, then the Hessian satisfies the Lichnerowicz Laplacian heat equation:

t(f)=ΔL(f)\begin{equation*} \frac{\partial}{\partial t}(\nabla \nabla f)=\Delta_{L}(\nabla \nabla f) \tag{2.36} \end{equation*}

Ex2. (Commutator of t+ΔL\frac{\partial}{\partial t}+\Delta_{L} and \nabla \nabla ). Using the formulas derived in the proof of Lemma 2.33, establish under the Ricci flow that we have the identity ij(ft+Δf)=(t+ΔL)ijf2(iRj+jRiRij)f\nabla_{i} \nabla_{j}\left(\frac{\partial f}{\partial t}+\Delta f\right)=\left(\frac{\partial}{\partial t}+\Delta_{L}\right) \nabla_{i} \nabla_{j} f-2\left(\nabla_{i} R_{j \ell}+\nabla_{j} R_{i \ell}-\nabla_{\ell} R_{i j}\right) \nabla_{\ell} f.

Proof:

**Ex3.**Show that under the Ricci flow, for any 1-form XX

(tΔL)(LXg)=L[(tΔd)X]g\left(\frac{\partial}{\partial t}-\Delta_{L}\right)\left(\mathcal{L}_{X^{\natural}} g\right)=\mathcal{L}_{\left[\left(\frac{\partial}{\partial t}-\Delta_{d}\right) X\right]^{\natural} g}

that is,

(tΔL)(iXj+jXi)=iYj+jYi\begin{equation*} \left(\frac{\partial}{\partial t}-\Delta_{L}\right)\left(\nabla_{i} X_{j}+\nabla_{j} X_{i}\right)=\nabla_{i} Y_{j}+\nabla_{j} Y_{i} \tag{2.38} \end{equation*}

where Y(tΔd)XY \doteqdot\left(\frac{\partial}{\partial t}-\Delta_{d}\right) X

Lemma: If (Mn,g(t))\left(M^{n}, g(t)\right) is a solution to the Ricci flow and if XX is a vector field evolving by

tXi=ΔXi+RkiXk\begin{equation*} \frac{\partial}{\partial t} X^{i}=\Delta X^{i}+R_{k}^{i} X^{k} \tag{2.39} \end{equation*}

then hijiXj+jXi=(LXg)ijh_{i j} \doteqdot \nabla_{i} X_{j}+\nabla_{j} X_{i}=\left(\mathcal{L}_{X} g\right)_{i j} evolves by

thij=ΔLhijΔhij+2RkijhkRikhkjRjkhik\begin{equation*} \frac{\partial}{\partial t} h_{i j}=\Delta_{L} h_{i j} \doteqdot \Delta h_{i j}+2 R_{k i j \ell} h_{k \ell}-R_{i k} h_{k j}-R_{j k} h_{i k} \tag{2.40} \end{equation*}

Proof:

**Remark:**A special case of (2.38) is formula (2.33). We may see this as follows. Since (tΔd)df=d(tΔ)f\left(\frac{\partial}{\partial t}-\Delta_{d}\right) d f=d\left(\frac{\partial}{\partial t}-\Delta\right) f, by taking X=dfX=d f, we have from (2.38)

(tΔL)(2ijf)=i((tΔd)(df))j+j((tΔd)(df))i=2ij((tΔ)f)\begin{aligned} \left(\frac{\partial}{\partial t}-\Delta_{L}\right)\left(2 \nabla_{i} \nabla_{j} f\right) & =\nabla_{i}\left(\left(\frac{\partial}{\partial t}-\Delta_{d}\right)(d f)\right)_{j}+\nabla_{j}\left(\left(\frac{\partial}{\partial t}-\Delta_{d}\right)(d f)\right)_{i} \\ & =2 \nabla_{i} \nabla_{j}\left(\left(\frac{\partial}{\partial t}-\Delta\right) f\right) \end{aligned}

which is (2.33).

Ex4 Show that if XX is a Killing vector field, then

kjXi+RkjiX=0\begin{equation*} \nabla_{k} \nabla_{j} X_{i}+R_{\ell k j i} X_{\ell}=0 \tag{2.41} \end{equation*}

Tracing (2.41), we have

ΔXi+RiX=0\begin{equation*} \Delta X_{i}+R_{\ell i} X_{\ell}=0 \tag{2.42} \end{equation*}

Hence, if MnM^{n} is closed and the Ricci curvature is negative, then there are no nontrivial Killing vector fields.

Proof:

Lemma(Evolution of the Ricci tensor under RF). Under the Ricci flow,

tRij=ΔLRij=ΔRij+2RkijRk2RikRjk\begin{equation*} \frac{\partial}{\partial t} R_{i j}=\Delta_{L} R_{i j}=\Delta R_{i j}+2 R_{k i j \ell} R_{k \ell}-2 R_{i k} R_{j k} \tag{2.43} \end{equation*}

Proof:

Ex6. Calculate the evolution equation for RijαRgijR_{i j}-\alpha R g_{i j}, where αR\alpha \in \mathbb{R}.

Proof: